Nuclear astrophysics at n_TOF: focus on neutron sources in stars

<u>C. Massimi^{1,2} for the n_TOF Collaboration</u>

¹Istituto Nazionale di Fisica Nucleare (INFN) Via Enrico Fermi 54, 00044 Frascati (Rome) Italy ²University of Bologna, Department of Physics and Astronomy I-40126 Bologna Via Irnerio 46, 40126 Bologna, Italy

The neutron time-of-flight facility n_TOF at CERN has been producing relevant nuclear data for science and technology since 2001. It consists of two neutron beam lines for time-of-flight measurements, located at 185 and 19 m from the neutron-producing target, respectively; and one irradiation station for activation measurements. So far, a considerable amount of important (n,γ) reactions for nuclear astrophysics, and in particular for the s process, have been studied.

The s process is responsible for the production of about half of the elemental abundances beyond iron that we observe today. The s-process nucleosynthesis takes place either in massive stars, where the ${}^{22}Ne(\alpha,n){}^{25}Mg$ reaction is the main neutron source, or in low mass Asymptotic Giant Branch stars, where the neutrons are provided by the ${}^{13}C(\alpha,n){}^{16}O$ and the ${}^{22}Ne(\alpha,n){}^{25}Mg$ reaction.

The study of $n+^{25}Mg$ and $n+^{16}O$ gives important constraints for the yet uncertain reaction rates of the relevant neutron sources. In addition, during the production of heavy elements, ^{25}Mg is one of the most important neutron poison via neutron capture, in competition with 56 Fe.

In this presentation I will provide a detailed description of the n_TOF facility, and the performed and planned activities related to the ${}^{13}C(\alpha,n){}^{16}O$ and the ${}^{22}Ne(\alpha,n){}^{25}Mg$ neutron reaction sources of the s process.